Solid-state NMR studies of the prion protein H1 fragment.

نویسندگان

  • J Heller
  • A C Kolbert
  • R Larsen
  • M Ernst
  • T Bekker
  • M Baldwin
  • S B Prusiner
  • A Pines
  • D E Wemmer
چکیده

Conformational changes in the prion protein (PrP) seem to be responsible for prion diseases. We have used conformation-dependent chemical-shift measurements and rotational-resonance distance measurements to analyze the conformation of solid-state peptides lacking long-range order, corresponding to a region of PrP designated H1. This region is predicted to undergo a transformation of secondary structure in generating the infectious form of the protein. Solid-state NMR spectra of specifically 13C-enriched samples of H1, residues 109-122 (MKHMAGAAAAGAVV) of Syrian hamster PrP, have been acquired under cross-polarization and magic-angle spinning conditions. Samples lyophilized from 50% acetonitrile/50% water show chemical shifts characteristic of a beta-sheet conformation in the region corresponding to residues 112-121, whereas samples lyophilized from hexafluoroisopropanol display shifts indicative of alpha-helical secondary structure in the region corresponding to residues 113-117. Complete conversion to the helical conformation was not observed and conversion from alpha-helix back to beta-sheet, as inferred from the solid-state NMR spectra, occurred when samples were exposed to water. Rotational-resonance experiments were performed on seven doubly 13C-labeled H1 samples dried from water. Measured distances suggest that the peptide is in an extended, possibly beta-strand, conformation. These results are consistent with the experimental observation that PrP can exist in different conformational states and with structural predictions based on biological data and theoretical modeling that suggest that H1 may play a key role in the conformational transition involved in the development of prion diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L).

The peptide fragment 89-143 of the prion protein (carrying a P101L mutation) is biologically active in transgenic mice when in a fibrillar form. Injection of these fibrils into transgenic mice (expressing full length PrP with the P101L mutation) induces a neurodegenerative prion disease (Kaneko et al., J. Mol. Biol. 295 (2000) 997). Here we present solid-state NMR studies of PrP(89-143)(P101L) ...

متن کامل

Solid-state NMR studies of the secondary structure of a mutant prion protein fragment of 55 residues that induces neurodegeneration.

The secondary structure of a 55-residue fragment of the mouse prion protein, MoPrP(89-143), was studied in randomly aggregated (dried from water) and fibrillar (precipitated from water/acetonitrile) forms by (13)C solid-state NMR. Recent studies have shown that the fibrillar form of the P101L mutant of MoPrP(89-143) is capable of inducing prion disease in transgenic mice, whereas unaggregated o...

متن کامل

Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein.

We report the results of atomic force microscopy, Fourier-transform infrared spectroscopy, solid-state nuclear magnetic resonance, and molecular dynamics (MD) calculations for amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein (H1). Our data reveal that H1 fibrils contain no more than two beta-sheet layers. The peptide strands of H1 fibrils are antiparallel with the ...

متن کامل

Prion protein NMR structure and species barrier for prion diseases.

The structural basis of species specificity of transmissible spongiform encephalopathies, such as bovine spongiform encephalopathy or "mad cow disease" and Creutzfeldt-Jakob disease in humans, has been investigated using the refined NMR structure of the C-terminal domain of the mouse prion protein with residues 121-231. A database search for mammalian prion proteins yielded 23 different sequenc...

متن کامل

Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy.

We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed β-solenoid, and an atomic-resolution NMR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 1996